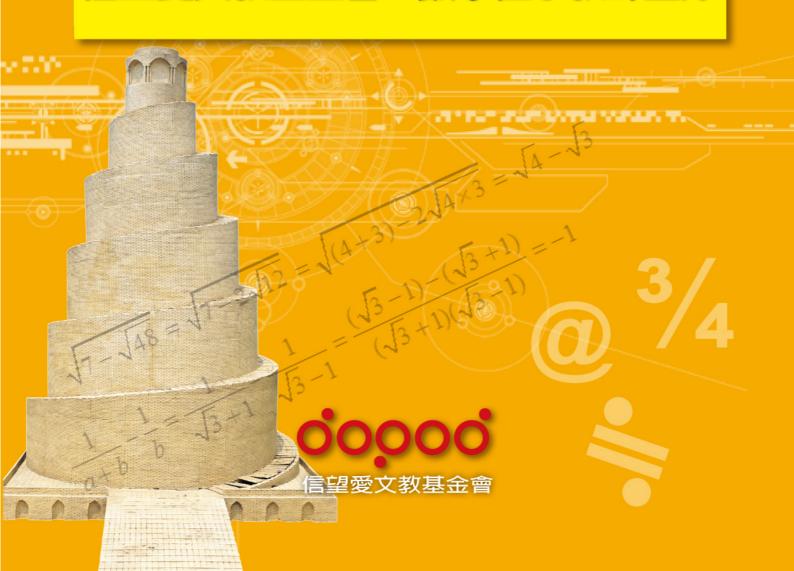
國數性質的判定

信望愛文教基金會·數學種子教師團隊

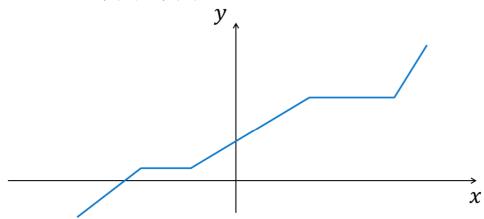


函數性質的判定

1. 函數的遞增、遞減

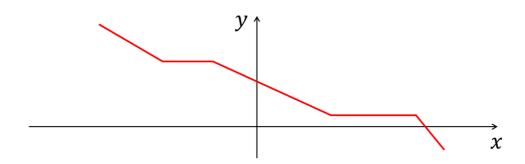
1-1 遞增

若 $x_2 > x_1$,則 $f(x_2) \ge f(x_1)$,符合上述條件之函數,稱為**遞增函數**。



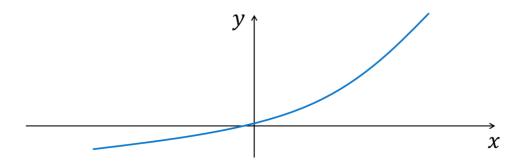
1-2 遞減

若 $x_2 > x_1$,則 $f(x_2) \le f(x_1)$,符合上述條件之函數,稱為**遞減函數**。



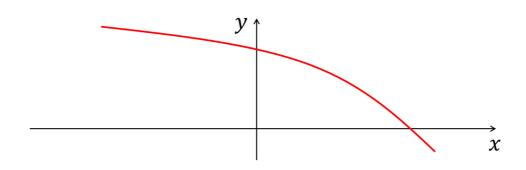
1-3 嚴格遞增

若 $x_2 > x_1$,則 $f(x_2) > f(x_1)$,符合上述條件之函數,稱為**嚴格遞增函數**。



1-4 嚴格遞減

若 $x_2 > x_1$,則 $f(x_2) < f(x_1)$,符合上述條件之函數,稱為**嚴格遞減函數**。



1-5 遞增遞減與導函數值

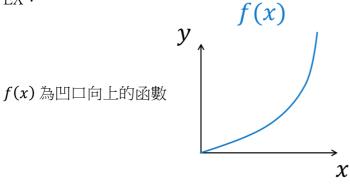
- i. 遞增→ 斜率 ≥ 0 → 導函數 $f'(x) \geq 0$
- ii. 遞減→ 斜率 ≤ 0 → 導函數 $f'(x) \leq 0$
- iii. 嚴格遞增 \rightarrow 斜率 $> 0 \rightarrow$ 導函數 f'(x) > 0
- iv. 嚴格遞減→ 斜率 < 0 → 導函數 f'(x) < 0

2.

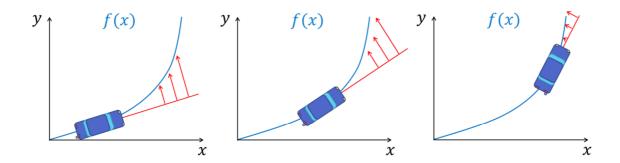
2. 函數的凹向性

函數的凹向性與遞增遞減不同,遞增遞減強調的是隨著自變數x的改變對應函數值y的大小關係。而凹向性是在表現函數值改變的趨勢。

EX:



像是從空中鳥瞰一台車,這台車正在左轉彎。



2-1 凹口向上

若函數 f(x) 在區間 (a,b) 內的二階導函數 $f''(x) \ge 0$,則稱 f(x) 在 (a,b) 內凹口向上。

2-2 凹口向下

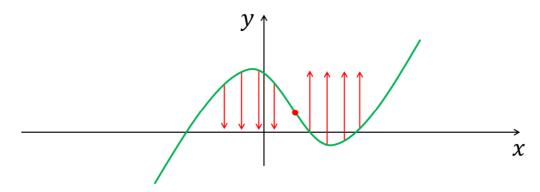
若函數 f(x) 在區間 (a,b) 內的二階導函數 $f''(x) \le 0$,則稱 f(x) 在 (a,b) 內凹口向下。

3. 反曲點

函數圖形經某一點後凹口方向發生改變,則該點稱之為反曲點。

定義:

若f''(a) = 0且在x > a與x < a的時候,凹口方向互不相同,則稱 $\left(a, f(a)\right)$ 點為函數 f(x)的反曲點。



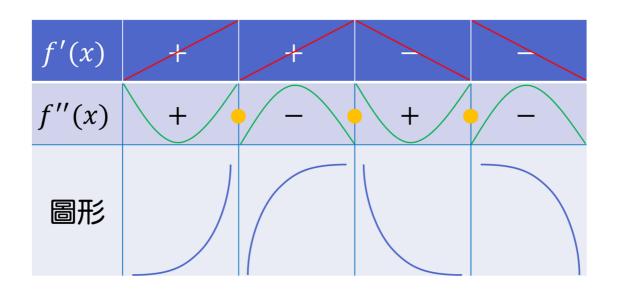
4. 多項式函數繪圖

利用號增、號減、凹向性與反曲點等函數性質來描繪出函數圖形。

遞増
$$\rightarrow f'(x) \ge 0$$

遞減 $\rightarrow f'(x) \le 0$
凹口向上 $\rightarrow f''(x) \ge 0$
凹口向下 $\rightarrow f''(x) \le 0$
反曲點 $\rightarrow f''(x) = 0$

則一階導函數 f'(x) 與二階導函數 f''(x) 所對應圖形表格如下。



EX: 觀察函數 $f(x) = x^3 + 3x^2 - 9x - 2$ 並繪出圖形。

$$f'(x) = 3 \cdot x^2 + 2 \cdot 3x^1 - 9x^0 + 0$$

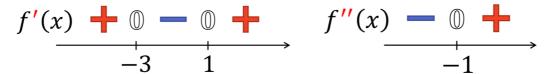
= $3x^2 + 6x - 9 = 3(x+3)(x-1)$

 $當 x = -3 \cdot 1$ 時 f'(x) = 0。

$$f''(x) = 2 \cdot 3x^{1} + 6x^{0} + 0$$
$$= 6x + 6 = 6(x + 1)$$

當 x = -1 時 f''(x) = 0。

進而求得一階導函數 f'(x) 與二階導函數 f''(x) 的正負區域:

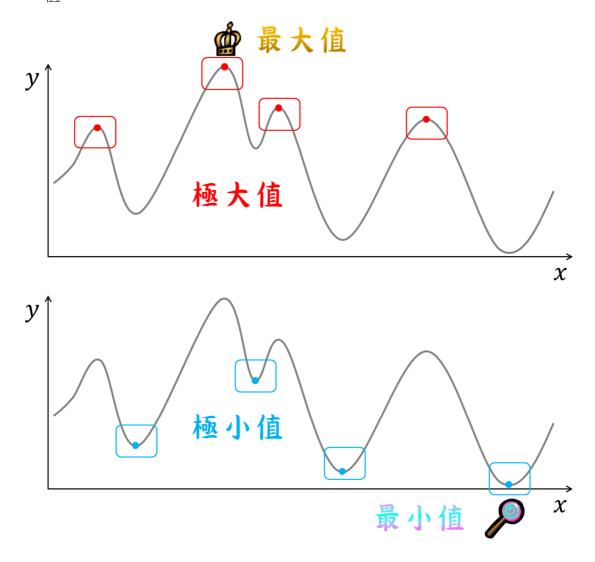


再整理表格以觀察圖形。

X		-3		-1		1					
f(x)		25		9		- 7					
f'(x)	/K	0	_	_	_	0	/ * /				
f''(x)		_	-	0	+	+	+				
\mathcal{Y} \uparrow											
$\stackrel{\longrightarrow}{x}$											

5. 多項式函數的極值

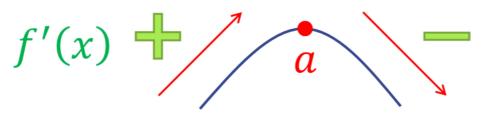
- 1. 最大值:
 - 函數y = f(x),自變數在規定範圍內所能對應到最大的值,我們稱之為最大值。
- 2. 最小值:
 - 函數 y = f(x), 自變數在規定範圍內所能對應到最小的值, 我們稱之為最小值。
- 3. 極大值:
 - 函數 y = f(x),若在 x = a 附近的函數值都小於 f(a),則稱 f(x) 在 x = a 有極大值。
- 4. 極小值:
 - 函數 y = f(x) ,若在 x = a 附近的函數值都大於 f(a) ,則稱 f(x) 在 x = a 有極小 值。



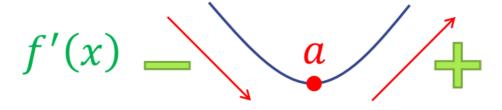
6. 判別函數的極值

設函數 y = f(x) 在 x = a 的附近可微分,且 f'(a) = 0。

若在 a 點附近,當 x < a 時 f'(x) > 0 ;當 x > a 時 f'(x) < 0 ,則 f(x) 在 x = a 處有極大 **值**。



若在 a 點附近,當 x < a 時 f'(x) < 0;當 x > a 時 f'(x) > 0,則 f(x)在 x = a 處有極小值。

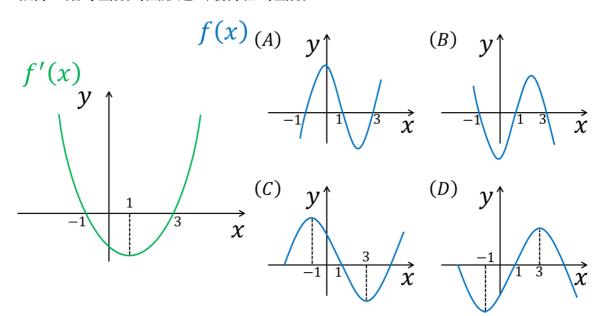


小試身手

- 1. $f(x) = 2x^3 + 4x^2 8x + 99999$ 求出遞增、遞減的區間。
- 2. 函數 $f(x) = \frac{1}{20}x^5 \frac{1}{12}x^4 \frac{4}{3}x^3 + 6x^2 + 5x 7$ 請劃分其凹向性並找出反曲點。
- 3. 根據下列表格繪出此函數圖形。

x		-5		-2		1		5		8	
f(x)		0		7		13		-1		-6	
f'(x)	_	0	+	+	+	0	_	_	_	0	+
f''(x)	+	0	+	0	_	_	_	0	+	+	+

4. 根據一階導函數的圖形選出最符合的函數。



5. 設函數 $f(x) = \frac{1}{5}x^5 - \frac{3}{4}x^4 - x^3 + \frac{11}{2}x^2 - 6x - 4$ 求 $x \in [-3, 4]$ 的極值與最大最小值。

1.
$$f(x) = 2x^3 + 4x^2 - 8x + 99999$$

 $f'(x) = 3 \cdot 2x^2 + 2 \cdot 4x - 8 + 0$
 $= 6x^2 + 8x - 8$
 $= 2(3x - 2)(x + 2)$
 $f'(x) + 0 - 0$

當
$$x = -2 \cdot \frac{2}{3}$$
 時 $f'(x) = 0$ 。
當 $x \ge \frac{2}{3}$ 或 $x \le -2$ 時,導函數 $f'(x) \ge 0$ →函數遞增
遞增區間為: $\left[\frac{2}{3}, \infty\right), (\infty, -2\right]$
當 $-2 \le x \le \frac{2}{3}$ 時,導函數 $f'(x) \le 0$ →函數遞減
遞減區間為: $\left[-2, \frac{2}{3}\right]$

2.
$$f(x) = \frac{1}{20}x^{5} - \frac{1}{12}x^{4} - \frac{4}{3}x^{3} + 6x^{2} + 5x - 7$$

$$f'(x) = 5 \cdot \frac{1}{20}x^{4} - 4 \cdot \frac{1}{12}x^{3} - 3 \cdot \frac{4}{3}x^{2} + 2 \cdot 6x^{1} + 5x^{0} + 0$$

$$= \frac{1}{4}x^{4} - \frac{1}{3}x^{3} - 4x^{2} + 12x + 5$$

$$f''(x) = 4 \cdot \frac{1}{4}x^{3} - 3 \cdot \frac{1}{3}x^{2} - 2 \cdot 4x^{1} + 12x^{0} + 0$$

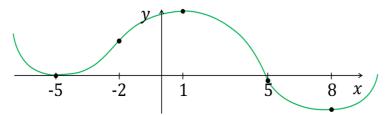
$$= x^{3} - x^{2} - 8x + 12$$

$$= (x - 2)^{2}(x + 3)$$

$$f'''(x) = 0 \qquad + 0$$

當
$$x = -3 \cdot 2$$
 時 $f''(x) = 0$ 。
當 $x \ge -3$ 時,導函數 $f''(x) \ge 0$ →凹口向上
凹口向上區間為: $[-3, \infty)$
當 $x \le -3$ 時,導函數 $f''(x) \le 0$ →凹口向下
凹口向下區間為: $(\infty, -3]$

3.	X		- 5		-2		1		5		8	
	f(x)		0		7		13		-1		-6	
	f'(x)	7	0	+	+	+	0	/		1/	0	$_{/\!$
	f''(x)	+	0	+	0	_	_	_	0	+	+	+



4. **(C)**

5.
$$f(x) = \frac{1}{5}x^5 - \frac{3}{4}x^4 - x^3 + \frac{11}{2}x^2 - 6x - 4$$

$$f'(x) = 5 \cdot \frac{1}{5}x^4 - 4 \cdot \frac{3}{4}x^3 - 3 \cdot x^2 + 2 \cdot \frac{11}{2}x - 6$$

$$= x^4 - 3x^3 - 3x^2 + 11x - 6$$

$$f'(1) = 1 - 3 - 3 + 11 - 6 = 0$$

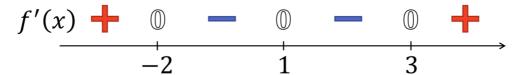
$$1 - 3 - 3 \quad 11 - 6 = 0$$

$$1 - 2 - 5 \quad 6 \quad 1$$

$$1 - 2 - 5 \quad 6 \quad 0$$

$$f'(x) = (x - 1)^2(x - 3)(x + 2)$$

$$x = -2 \cdot 1 \cdot 3 \Rightarrow f'(x) = 0 \circ$$



當 x = -2 時 f(x)有極大值 f(-2) = 19.6

當 x = 3 時 f(x)有極小值 f(3) = -11.65

邊界也是極值

當 x = -3 時 f(x)有極小值 f(-3) = -18.85

當 x = 4 時 f(x) 有極大值 f(4) = 8.8

當 x = -2 時 f(x)有最大值 f(-2) = 19.6

當 x = -3 時 f(x)有最小值 f(-3) = -18.85