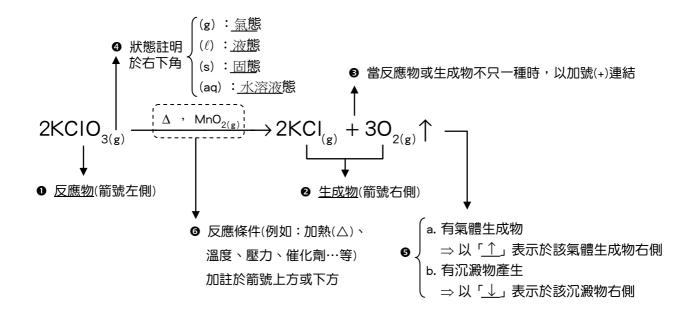
化基1進階講義

化學計量

滕翼老師

信望愛文教基金會


主題九、化學計量

A、化學反應表示法

【一】化學反應式(或化學方程式)的意義:

是以化學式及符號共同組合表示化學反應的式子,為化學界的專用語言。

【二】化學反應式的寫法:

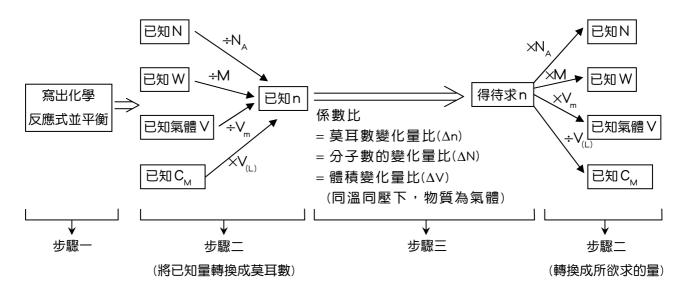
《注意》:寫化學反應式不可憑空臆測,須有反應的事實

B、化學反應式的係數平衡法

【一】觀察法:以丁烷與氧氣反應生成二氧化碳和水蒸氣爲例

步驟一	根據實驗結果寫出反應物及生成物的化學式。
	實例: $C_4H_{10(\ell)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
步驟二	訂「元素種類最多」且「原子個數最多」之化合物的係數為 1。
	實例: $1C_4H_{10(\ell)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
步驟三	平衡C與H原子(原子不滅定律)
	實例: $1C_4H_{10(\ell)} + O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(g)}$
步驟四	平衡 O 原子(原子不滅定律)
	實例: $1C_4H_{10(\ell)} + \frac{13}{2}O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(g)}$
步驟五	係數若有分數,將其通分至最簡單整數比。
	實例: $2C_4H_{10(\ell)} + 13O_{2(g)} \rightarrow 8CO_{2(g)} + 10H_2O_{(g)}$

【二】代數法:以氨氣與氧氣反應生成一氧化氮及水爲例。

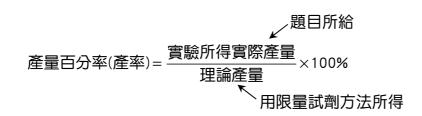

	根據實驗結果寫出反應物及生成物的化學式。		
步驟一			
步驟二	訂「元素種類最多」且「原子個數最多」之化合物的係數為 1。其餘係數依序設代數為a 、 b 、 c ···		
	實例: $1NH_{3(g)} + aO_{2(g)} \rightarrow bNO_{(g)} + cH_2O_{(\ell)}$		
步驟三	依「原子不滅」與「電荷不滅」等定律列出聯立方程式並解出代數之值。		
	實例:依原子不滅定律: $\begin{cases} N : \underline{1=b} & \cdots & (1) \\ H : \underline{3=2c} & \cdots & (2) \\ O : \underline{2a=b+c} & \cdots & (3) \end{cases}$ 由式 (1) 與 (2) 解出 $b=1$, $c=\frac{3}{2}$,再代入式 (3) ,解得 $a=\frac{5}{4}$		
	$\Rightarrow 1 \text{NH}_{3(g)} + \frac{5}{4} \text{O}_{2(g)} \rightarrow 1 \text{NO}_{(g)} + \frac{3}{2} \text{H}_2 \text{O}_{(\ell)}$		
步驟四	係數若有分數,將其通分至最簡單整數比。		
	實例: $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(\ell)}$		

C、化學計量之定義及化學計量之步驟方法

【一】定義:

利用化學反應式計算出反應物及生成物間的定量關係,即為化學計量。

【二】化學計量的步驟及方法:


(三)限量試劑與過量試劑:

限量試劑	過量試劑		
(1) 定義: 化學反應中若有兩種或兩種以上的反應物,	反應後有剩餘之試劑。		
則完全被用盡的反應物,稱之為 <u>限量試劑</u> 。			
(2) 用途:限量試劑可以用來決定生成物的產量。			
(3) 尋找方法:以反應物的「初始莫耳數			
,所得的比值最小者即為限量試劑。			

【四】理論產量:

在完全反應的情況下,限量試劑完全反應消耗掉之後,生成物所能得到的最大產量。

【五】產率:

6

概念回溯 1.

具有梨子口味的香料——乙酸丙酯($CH_3COOC_3H_7$),其合成反應的反應式為 $CH_3COOH + C_3H_7OH \xrightarrow{\begin{subarray}{c} H_2SO_4 \\ \land \end{subarray}} CH_3COOC_3H_7 + H_2O$

取冰醋酸(CH₃COOH)24克、丙醇(C₃H7OH)30克以及少量的濃硫酸在燒瓶內混合共熱

- ,以製備乙酸丙酯,回答下列問題:(原子量:H=1,C=12,O=16)
- (1) 反應系中何者是限量試劑?
- (2) 依據化學反應式,乙酸丙酯的理論產量為多少克?
- (3) 經充分反應後,若實際上製得乙酸丙酯 12.24 克,則本反應的產率為多少?

【華江高中】

概念回溯 2.

碳化鈣(CaC_2 ,俗稱電石)96 克加水 72 克生成乙炔(C_2H_2)氣體,其化學反應式為 $CaC_{2(s)} + 2H_2O_{(\ell)} \rightarrow C_2H_{2(g)} + Ca(OH)_{2(aq)}$,回答下列各題:

- (1) 理論上,至多可生成乙炔多少莫耳?
- (2) 理論上,反應後剩下何種物質多少克?
- (3) 產生的乙炔在 STP 時的體積為多少升?
- (4) 若產生的乙炔在 STP 時的體積僅 22.4 升,則產率為多少?

【松山高中】

概念回溯 3.

銀器在硫化氧存在的空氣中,會發生下列反應生成黑色的硫化銀:

4Ag⑸+2H₂S⑸+O₂⑸→2Ag₂S⑸+2H₂O⑴。取 2.70 克 Ag、1.70 克 H₂S 和 0.16 克 O₂ 混合,

充分進行反應。(原子量: O=16, S=32, Ag=108)

- (1) 何種物質是該反應的限量試劑?
- (2) 充分反應後可得 Ag₂S 若干克?

【中山女中】

※概念回溯簡答專區※

1. (1) CH₃COOH; 2. (1) 1.5; 3. (1) O₂; (2) 40.8; (2) H₂O, 18; (2) 2.48 (3) 30% (3) 33.6; (4) 66.7%

※概念回溯解析專區※

1.(1)
$$CH_3COOH + C_3H_7OH \xrightarrow{H_2SO_4} CH_3COOC_3H_7 + H_2O$$

$$\frac{24g}{60} \qquad \frac{30g}{60}$$

$$= \underbrace{0.4\text{mole}}_{\text{R}} = 0.5\text{mole}$$

(2)

$$\begin{array}{cccc} \text{CH}_3\text{COOH} + \text{C}_3\text{H}_7\text{OH} & \xrightarrow{\text{H}_2\text{SO}_4} & \text{CH}_3\text{COOC}_3\text{H}_7 + \text{H}_2\text{O} \\ \\ \text{0.4mole} & \text{0.5mole} & \\ \hline -0.4\text{mole} & -0.4\text{mole} & +0.4\text{mole} & +0.4\text{mole} \\ \hline & \text{0 mole} & \text{0.1 mole} & \hline & \text{0.4 mole} & \text{0.4 mole} & \\ \hline \end{array}$$

⇒∴ CH₃COOC₃H₇理論產量為(0.4×102) = 40.8g

(3) 產率=
$$\frac{實際產量}{理論產量} \times 100\% = \frac{12.24}{40.8} \times 100\% = 30\%$$
。

2. (1)
$$CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

$$\frac{96g}{64} \frac{72g}{18}$$
= 1.5mole = 4mole
$$\frac{-1.5}{0} \frac{-3}{1000} + \frac{1.5mole}{1.5mole} = \frac{1.5mole}{1.5mole}$$

(2) 剩下 $H_2O(1 \times 18)g = 18g$

(3) 生成
$$V_{C_2H_2} = V_m \times n_{C_2H_2} = 22.4 \text{ L/mole} \times 1.5 \text{ mole} = 33.6 \text{ (L)}$$

(4) 產率=
$$\frac{實際產量}{理論產量} \times 100\% = \frac{22.4}{33.6} \times 100\% = 66.7\%$$
。

$$(2) n_{O_2}$$
: $n_{Ag_2S} = 1$: 2
 $\Rightarrow n_{Ag_2S} = 0.005 \times 2 = 0.01 \text{ mole}$
 $\Rightarrow m_{Ag_2S} = M_{Ag_2S} \times n_{Ag_2S}$
 $= 248 \times 0.01$
 $= 2.48g$ °