

一維數據分析

陳清海 老師

信望愛文教基金會

1

lt99ok241 一維數據分析

主題一代表數據的數

統計經常以一簡單的數量來代表整個母體的某一特性,以作為衡量的標準.常用的代表數有眾數、中位數、算術平均數與幾何平均數.

- 1. 眾數:是指一群數據中出現次數最高的數.
- 2. 中位數:將一組數據由小到大排列如下: $x_1 \le x_2 \le \cdots \le x_n$,
 - (1) 當n為奇數時, $\Rightarrow k = \frac{n+1}{2}$, 中位數為 x_k .
 - (2) 當n 為偶數時, $\Leftrightarrow k = \frac{n}{2}$, 中位數為 $\frac{x_k + x_{k+1}}{2}$.
- 3. 算術平均數:
 - (1) 設n個數據為 x_1, x_2, \dots, x_n ,則算術平均數(簡稱平均數)

$$\mu = \frac{1}{n} (x_1 + x_2 + \dots + x_n) = \frac{1}{n} \sum_{k=1}^{n} x_k$$
.

- (2) 已分組數據以組中點代表該組數據.
- 4. 幾何平均數: 當n個數據為 x_1, x_2, \dots, x_n 時,

其幾何平均數G為 $G = \sqrt[n]{x_1 \cdot x_2 \cdot \cdots \cdot x_n}$.

平均成長率: 當n年的成長率分別為 r_1, r_2, \dots, r_n 時,

其平均成長率 x 為 $x = \sqrt[n]{(1+r_1)(1+r_2)\cdots(1+r_n)} - 1$.

<mark>【例題 1】</mark>【配合課本例 1、例 2】

求數值3,2,3,7,5,3,6,4,1,3,6,8的眾數與中位數.

Ans: 眾數 3, 中位數 3.5

【詳解】

將 12 個數據由小到大排列: 1, 2, 3, 3, 3, 3, 4, 5, 6, 6, 7, 8, 因為出現最多次的數是 3, 眾數為 3.

中位數是第 6 與第 7 的平均, 為 $\frac{3+4}{2}$ = 3.5.

序號		數值		
	9		1	1
	2		2	1
	1			
	3		3 3 3	
	3 6		3	
	10		3	4
	8		4	1
	5		5	1
	7		6	
	11		6	2
	4		7	1
	12		8	1

【類題 1】

某班参加英文能力檢定的成績(級分)如下,求眾數與中位數.

級分	3	4	5	6 4	7	8	9
人數	1	6	5	4	8	2	1

Ans: 眾數 7, 中位數 6

【詳解】

因為出現最多次的數是 7, 共出現 8 次, 所以眾數為 7(級分). 全班 27 人, 中位數在第 14 位, 所以中位數為 6.

級分	人數	累積
3	1	1
4	6	7
5	5	12
6	4	16
7	8	24
8	2	26
9	1	27

【例題 2】【配合課本例 3】

- (1) 求1, 2, 3, 4, 5, 5, 7, 7, 7, 9十個數據的算術平均數.
- (2) 擲一骰子 100 次, 將其結果記錄如下表, 求此資料的算術平均數.

Ans: (1) 5, (2) 3.4

【詳解】

- (1) $\mu = \frac{1}{10} (1 + 2 + 3 + 4 + 5 + 5 + 7 + 7 + 7 + 9) = 5$.
- (2) 因為1, 2, 3, 4, 5, 點分別出現10, 25, 20, 20, 10, 15 次, 所以算術平均數為

數值	點數	次數	
1	1	10	10
2	2	25	50
3	3	20	60
4	4	20	80
5	5	10	50
5	6	15	90
7		100	340
7			3.4
7			
9			
5			

【類題 2】

某班抽樣 10 位同學的英文成績依次為

32, 58, 86, 34, 62, 78, 91, 69, 63, 77 (分), 求算術平均數.

Ans: 65

【詳解】

$$\mu = \frac{32 + 34 + 58 + 62 + 63 + 69 + 77 + 78 + 86 + 91}{10} = 65.$$

成績 32 58 86 34 62 78 91 69 63 77 65

<mark>【例題 3】</mark>【配合課本例 4】

某班段考成績如下,求算術平均數.

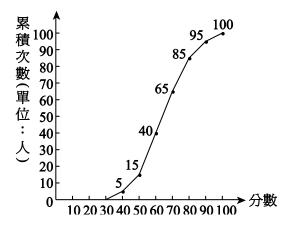
Ans: 67

【詳解】

$$\mu = \frac{1}{50} (35 \times 5 + 45 \times 7 + 55 \times 6 + 65 \times 7 + 75 \times 10 + 85 \times 10 + 95 \times 5) = 67.$$

【類題 3】

如圖是高二學生 100 人數學考試成績的累積次數分配曲線圖.假設各組內的次數都平均分布在組距內,求算術平均數.



Ans: 64.5

【詳解】

將累積次數分配曲線圖中,

各組的人數列表如下:

算術平均數為

$$\frac{35 \times 5 + 45 \times 10 + 55 \times 25 + 65 \times 25 + 75 \times 20 + 85 \times 10 + 95 \times 5}{100}$$

$$=\frac{6450}{100}=64.5$$
 ($\%$).

<mark>【例題 4】</mark>【配合課本例 6】

某公司統計其產品 4 年來的銷售量成長率分別為 10%, 21%, 21%, 33.1%, 求這 4 年銷售量的平均成長率.

Ans: 21%

【詳解】

若平均成長率為 x, 則有

$$(1+x)^4 = (1+10\%)(1+21\%)(1+21\%)(1+33.1\%)$$
,

整理可得

$$x = \sqrt[4]{(1+10\%)(1+21\%)(1+21\%)(1+33.1\%)} - 1$$

$$=\sqrt[4]{1.1\times1.21\times1.21\times1.331}-1=0.21$$

即這 4年的平均成長率為 21%.

1.1 1.21 1.21 1.331 1.21

【類題 4】

已知股票每天最大漲跌幅為前一日的±7%,某股票漲停2天又跌停2天,求此股票4天的平均漲跌幅.

Ans: -0.25%

【詳解】

若平均漲跌幅為 x, 則有

$$(1+x)^4 = (1+7\%)(1+7\%)(1-7\%)(1-7\%)$$
,

整理可得 $x = \sqrt[4]{1.07 \times 1.07 \times 0.93 \times 0.93} - 1 \approx -0.0025$,

即這4天的平均漲跌幅為 -0.25%.

主題二、表示數據離散趨勢的數

用來量測資料分散程度的數,稱為離差.常用的有:全距、四分位距及標準差.

- 全距:是一群數據中,最大數與最小數的差.
 若為已分組數據,則為最大一組的上限與最小一組的下限之差.
- 2. 四分位距(IQR):是第 3 四分位數 Q_3 與第 1 四分位數 Q_1 的差,即 $IQR = Q_3 Q_1$.

計算四分位數的步驟如下:第i四分位數(Q_i).

- (1) 將 n 個數據從小到大排列.
- (2) 計算 $k_i = \frac{i}{4} \times n$, i = 1, 2, 3.

 - ② 若 k_i 是整數,則四分位數 Q_i 為第 k_i 個位置和第 k_i +1個位置所對應之數值的平均.
- 3. 標準差: 設n個數據為 x_1, x_2, \dots, x_n , 其算術平均數為 μ , 變異數 σ^2 為所有離均差平方的平均, 即

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 .$$

標準差σ為變異數的正平方根,即

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu^2} .$$

【例題 5】【配合課本例 7、例 8】

某班参加英文能力檢定的成績(級分)如下,求全距與四分位距.

級分 3 4 5 6 7 8 9 人數 1 6 5 4 8 2 1

Ans: 全距 6,四分位距 3

【詳解】

全距=9-3=6,

計算27人的四分位距:

計算 Q_1 : 因為 $k_1 = \frac{1}{4} \times 27 = 6.75$ 非整數,

所以 Q_1 是第 7 個數, 即 $Q_1=4$.

計算 Q₃: 因為 $k_3 = \frac{3}{4} \times 27 = 20.25$ 非整數,

所以 Q_3 是第 21 個數,即 $Q_3=7$.

故四分位距 IQR 為 $IQR = Q_3 - Q_1 = 7 - 4 = 3$.

【類題5】

求數值 3, 2, 3, 7, 5, 3, 6, 4, 1, 3, 7, 8的全距與四分位距.

Ans:全距7,四分位距3.5

【詳解】

將 12 個數據由小到大排列:

1, 2, 3, 3, 3, 4, 5, 6, 7, 7, 8,

全距=8-1=7,

計算 Q_1 : 因為 $k_1 = \frac{1}{4} \times 12 = 3$ 是整數,

所以 Q 是第 3 個數和第 4 個數的平均,

$$\text{ED } Q_1 = \frac{3+3}{2} = 3.$$

計算 Q_3 : 因為 $k_3 = \frac{3}{4} \times 12 = 9$ 是整數,

所以 Q_3 是第9個數和第10個數的平均,

$$\text{QI} Q_3 = \frac{6+7}{2} = 6.5 .$$

故四分位距 IQR 為

$$IQR = Q_3 - Q_1 = 6.5 - 3 = 3.5$$
.

<mark>【例題 6】</mark>【配合課本例 9】

求下列 5 個數據的算術平均數、變異數和標準差. 1, 2, 3, 4, 5.

Ans:算術平均數 3,變異數 2,標準差 √2

【詳解】

平均數
$$\mu = \frac{1+2+3+4+5}{5} = 3$$
,

變異數
$$\sigma^2 = \frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5} = 2$$
,

標準差 $\sigma = \sqrt{2}$.

數值	離均差		算術平均數	變異數	標準差
1	-2	4	3	2	1.414214
2	-1	1			
3	0	0			
4	1	1			
5	2	4			
		10			

【類題 6】

求數據1, 2, 3, 4, 5, 6, 7, 8, 9的算術平均數、變異數和標準差.

Ans: 算術平均數 5, 變異數 $\frac{20}{3}$, 標準差 $\frac{2\sqrt{15}}{3}$

【詳解】

平均數
$$\mu = \frac{1+2+\cdots+9}{9} = \frac{45}{9} = 5$$
,

離均差分別為-4,-3,-2,-1,0,1,2,3,4,

變異數
$$\sigma^2 = \frac{16+9+4+1+0+1+4+9+16}{9} = \frac{60}{9} = \frac{3}{3}$$
,

標準差
$$\sigma = \sqrt{\frac{20}{3}} = \frac{2\sqrt{15}}{3}$$
.

數值 離均差 算術平均數 變異數 標準差 -4 16 5 6.666667 2.581989 1 3 -2 4 4 -1 1 5 0 0 6 1 1 7 2 4 8 3 9 4 16 0 60

【例題 7】 【配合課本例 10】

某班 50 人的數學成績,整理如下表:

- (1) 求算術平均數
- (2) 設標準差為 \sqrt{k} ,求k的值.

Ans: (1) 57, (2) $\sqrt{136}$

【詳解】

(1) 這50個數的平均為

$$\frac{1}{x} = \frac{35 \times 5 + 45 \times 10 + 55 \times 10 + 65 \times 20 + 75 \times 5}{50} = \frac{2850}{50} = 57.$$

(2)			
	組中點 x _i	次數	(離均差)²
	35	5	$(35-57)^2=484$
	45	10	$(45-57)^2=144$
	55	10	$(55-57)^2=4$
	65	20	$(65-57)^2=64$
	75	5	$(75-57)^2 = 324$

得標準差為

【類題7】

下表為某公司 40 名員工的薪資(萬元)次數分配表, 求薪資的算術平均數和標準差.

Ans:算術平均數4,標準差2

【詳解】

這 40 個數的平均為

$$\bar{x} = \frac{1 \times 7 + 3 \times 14 + 5 \times 11 + 7 \times 8}{40} = \frac{160}{40} = 4$$
.

組中點 x _i	次數	(離均差)²
1	7	$\left(1-4\right)^2=9$
3	14	$(3-4)^2=1$
5	11	$(5-4)^2=1$
7	8	$\left(7-4\right)^2=9$

得標準差為

$$\sigma = \sqrt{\frac{1}{40}(9 \times 7 + 1 \times 14 + 1 \times 11 + 9 \times 8)} = \sqrt{\frac{160}{40}} = 2.$$

<mark>【例題 8】</mark>【配合課本例 11】

求數據1, 2, 3, 4, 5, 6, 7, 8的算術平均數和標準差.

Ans: 算術平均數 4.5,標準差 $\frac{\sqrt{21}}{2}$

【詳解】

平均數
$$\mu = \frac{1+2+\cdots+8}{8} = \frac{36}{8} = \frac{9}{2}$$
,

又 8 數的平方和為
$$\sum_{i=1}^{8} x_i^2 = 1^2 + 2^2 + \dots + 8^2 = 204$$
,

故標準差為
$$\sigma = \sqrt{\frac{204}{8} - \left(\frac{9}{2}\right)^2} = \sqrt{\frac{21}{4}} = \frac{\sqrt{21}}{2}$$
.

數值 平方 算術平均數 變異數 標準差 1 1 4.5 5.25 2.29129 2 4 3 9 4 16 5 25 6 36 7 49 8 64 204

【類題8】

求數據 2, 4, 6, 8, 9的算術平均數和標準差 .

Ans: 算術平均數 $\frac{29}{5}$,標準差 $\frac{2\sqrt{41}}{5}$

【詳解】

平均數
$$\mu = \frac{2+4+6+8+9}{5} = \frac{25}{5}$$
,

又 5 數的平方和為
$$\sum_{i=1}^{5} x_i^2 = 2^2 + 4^2 + 6^2 + 8^2 + 9^2 = 201$$
,

故標準差為
$$\sigma = \sqrt{\frac{201}{5} - \left(\frac{29}{5}\right)^2} = \sqrt{\frac{164}{25}} = \frac{2\sqrt{41}}{5}$$
.

<mark>【例題 9】</mark>【綜合題】

求下表 16 個數據的全距、四分位距及標準差.

數據次數	1	3	5	7
次數	7	3	5	1

Ans: 全距 6, 四分位距 4, 標準差 2

【詳解】

全距: 7-1=6.

四分位距:

中位數為第8,9個數據的平均,即3.

第一四分位數為第4與第5個數的平均,即1.

第三四分位數為第12與第13個數的平均,即5.

故四分位距為5-1=4.

標準差: 這16個數的平均為

$$\bar{x} = \frac{1 \times 7 + 3 \times 3 + 5 \times 5 + 7 \times 1}{16} = \frac{48}{16} = 3$$
.

數值 x _i	次數	(離均差)²
1	7	$\left(1-3\right)^2=4$
3	3	$(3-3)^2=0$
5	5	$\left(5-3\right)^2=4$
7	1	$(7-3)^2 = 16$

得標準差為
$$S = \sqrt{\frac{1}{16}(4 \times 7 + 0 \times 3 + 4 \times 5 + 16 \times 1)} = 2$$
.

【類題9】

某射擊小組有六人,今各射擊 5 發,各人命中數分別為 4, 1, 4, 3, 2, 4 發,若 a 表 其算術平均數,b 表其眾數,c 表其中位數,d 表其幾何平均數,e 表標準差,則 a 、b 、c 、d 與 e 的大小關係為何?

 $An_S: b>c>a>d>e$

【詳解】

排列: 1, 2, 3, 4, 4,

$$a = \frac{1+2+3+4+4+4}{6} = 3$$
,

$$b=4$$
,

$$c = \frac{3+4}{2} = 3.5$$
,

$$d = \sqrt[6]{1 \cdot 2 \cdot 3 \cdot 4 \cdot 4 \cdot 4} = \sqrt[6]{384} < 3$$

$$e = \sqrt{\frac{1}{6} \left[\left(-2 \right)^2 + \left(-1 \right)^2 + 0^2 + 1^2 \times 3 \right]}$$

$$=\sqrt{\frac{4}{3}}=\sqrt[6]{\left(\frac{4}{3}\right)^3}=\sqrt[6]{\frac{64}{27}}< d,$$

 $\therefore b > c > a > d > e$.

<mark>【例題 10】</mark>【常考題】

有 10 個數據,其中 6 個數的算術平均數為 9,標準差為 3;剩餘 4 個數的算術平均數為 4,標準差為 2,求全部 10 個數的算術平均數及標準差.

Ans:算術平均數 7,標準差 $\sqrt{13}$

【詳解】

已知前 6 個數 x_1 , x_2 , …, x_6 的算術平均數為 9, 標準差為 3; 剩下 4 個數 x_7 , x_8 , x_9 , x_1 , 的算術平均數為 4, 標準差為 2. 由算術平均數可列得

$$\frac{x_1 + \dots + x_6}{6} = 9$$

$$\Rightarrow x_1 + \dots + x_6 = 54, \quad \frac{x_7 + \dots + x_{10}}{4} = 4$$

$$\Rightarrow x_7 + \cdots + x_{10} = 16$$
.

因此,全部10個數的算術平均數為

$$\frac{x_1 + \dots + x_6 + x_7 + \dots + x_{10}}{10} = \frac{54 + 16}{10} = 7.$$

由標準差可列得

$$\sqrt{\frac{\sum_{i=1}^{6} x_{i}^{2}}{6} - 9^{2}} = 3 \Longrightarrow \sum_{i=1}^{6} x_{i}^{2} = 540 ,$$

$$\sqrt{\frac{\sum_{i=7}^{10} x_i^2}{4} - 4^2} = 2 \Longrightarrow \sum_{i=7}^{10} x_i^2 = 80 .$$

因此,全部 10 個數的標準差為

$$\sqrt{\frac{\sum_{i=1}^{10} x_i^2}{10} - 7^2} = \sqrt{\frac{540 + 80}{10} - 49} = \sqrt{13} .$$

【類題 10】

某班學生 50 人分為甲、乙兩組,甲組學生 30 人,學期成績平均 72 分,樣本標準差 8 分;乙組學生 20 人,平均 67 分,樣本標準差 7 分;若全班 50 人之標準 差為 \sqrt{k} 分,求 k 值 .

Ans: 64

【詳解】

全班平均
$$\bar{x} = \frac{30 \times 72 + 20 \times 67}{50} = 70$$
,

<mark>【例題 11】</mark>【常考題】

已知 10 個人的數學成績,成績的算術平均數為 62 分,標準差為 10 分.但因甲生違背考場規則,其成績 80 分須由 10 個成績中剔除,求成績更改後,9 個成績的算術平均數與標準差.

Ans:算術平均數 60,標準差 $\frac{8\sqrt{10}}{3}$

【詳解】

假設甲生之外的 9 人的成績為 x_1 , x_2 , …, x_9 . 由原算術平均數可得

$$\frac{80 + x_1 + \dots + x_9}{10} = 62 \implies x_1 + \dots + x_9 = 540 ,$$

因此,成績更改後,算術平均數為

$$\frac{x_1 + \dots + x_9}{9} = \frac{540}{9} = 60 \ (\%),$$

由原標準差可得

$$\sqrt{\frac{\left(80^2 + x_1^2 + \dots + x_9^2\right)}{10} - 62^2} = 10$$

$$\Rightarrow x_1^2 + \dots + x_9^2 = 33040 .$$

成績更改後,新標準差為

$$\sqrt{\frac{\left(x_1^2 + \dots + x_9^2\right)}{9} - 60^2} = \sqrt{\frac{33040}{9} - 3600} = \sqrt{\frac{640}{9}} = \frac{8\sqrt{10}}{3} \quad (\cancel{5}) .$$

【類題 11】

已知有11個數據的算術平均數是50,標準差是4,若刪除其中的一數「40」後,

- (1) 求新的算術平均數
- (2) 若新標準差是 \sqrt{k} ,求k之值.

Ans: (1) 51, (2) 6.6

【詳解】

- (1) 新的算術平均數 $\bar{x} = \frac{50 \times 11 40}{10} = 51$.
- (2) 由原標準差可得

$$\sqrt{\frac{\left(40^2 + x_1^2 + \dots + x_{10}^2\right)}{11} - 50^2} = 4 \Longrightarrow x_1^2 + \dots + x_{10}^2 = 26076 .$$

所以新標準差
$$\sigma = \sqrt{\frac{26076}{10} - 51^2} = \sqrt{\frac{66}{10}} = \sqrt{6.6}$$
 .
故 $k = 6.6$.

主題三、線性變換

1. 設抽取的 n 個數據 x_1, x_2, \dots, x_n 之算術平均數為 \overline{x} , 中位數為 Me(x),

全距為R(x),四分位距為IQR(x),標準差為 S_x .

將每個數據乘上a再加b,形成一組新數據 y_1, y_2, \dots, y_n ,即 $y_i = ax_i + b$, $i = 1, 2, \dots, n$,

令這些新數據的算術平均數為 \overline{y} ,中位數為Me(y),

全距為R(y), 四分位距為IQR(y), 標準差為 S_y , 則有

- $(1) \quad \overline{y} = a\overline{x} + b$
- (2) $Me(y) = a \cdot Me(x) + b$
- (3) R(y) = |a|R(x)
- (4) IQR(y) = |a|IQR(x)
- $(5) \quad S_{y} = |a| S_{x}$
- 2. 一元二次多項式 $\frac{1}{n}\sum_{k=1}^{n}(x_k-m)^2$ 的最小值就

發生在 $m = \mu$ 時,其最小值為 σ^2 .

【例題 12】 【配合課本例 12】

設抽取的 n 個數據 x_1, x_2, \dots, x_n 之算術平均數為 70,中位數為 60,全距為 20,四分位距為 7,標準差為 5.將每個數據乘上 -2 再加 10,形成一組新數據 y_1, y_2, \dots, y_n ,即 $y_i = -2x_i + 10$, $i = 1, 2, \dots, n$,求這些新數據的算術平均數、中位數、全距、四分位距及標準差.

Ans: 算術平均數-130,中位數 $-\emptyset$,全距 40,四分位距 14,標準差 10 【詳解】

新數據的算術平均數為 -2.70+10=-130,

中位數為-2·60+10=-110,

全距為 |-2|·20=40,

四分位距為 |-2| ·7=14,

標準差為 |-2|·5=10.

【類題 12】

若已知某一筆數據之算術平均數 $\bar{x}=10$,標準差 $S_x=3$,中位數 $M_{ex}=12$,眾數 $M_{ox}=8$,四分位距IQR=3,若y=-4x+3,則對新資料y而言,下列何者正確?

- (1) 算術平均數=43,(2) 標準差=-12,(3) 中位數=-45,(4) 眾數=-32,
- (5) 四分位距=12.

Ans : (3)(5)

【詳解】

(1)
$$\times$$
: $\overline{y} = -4\overline{x} + 3 = -4 \times 10 + 3 = -37$

(2)
$$\times$$
: $S_y = 4S_x = 4 \times 3 = 12$

(3)
$$\bigcirc$$
: $M_{ey} = -4M_{ex} + 3 = -4 \times 12 +$

(4)
$$\times$$
: $M_{oy} = -4M_{ox} + 3 = -4 \times 8 + 3 = -29$

(5)
$$\bigcirc$$
: $IQR_v = 4IQR_x = 4 \times 3 = 12$

故選(3)(5).

【例題 13】 【概念題】

設數據 x_1, x_2, \dots, x_{10} 的平均數x = 5,標準差為 S_x ,令 $y_i = ax_i + b$, $i = 1, 2, \dots, 10$,

其中a>0.已知 y_1, y_2, \dots, y_{10} 的平均數y=3, 標準差 $S_y=2S_x$, 則

- (1) $a = ____,$
- (2) b =_____.

Ans: $(1) 2 \cdot (2) -7$

【詳解】

曲
$$S_y = 2S_x$$
 知 $a = 2$.

因為
$$\bar{y} = \bar{ax} + b$$
, 即 $3 = 2 \times 5 + b$, 得 $b = -7$.

故
$$a = 2$$
, $b = -7$.

【類題 13】

某次全校數學競試的成績平均為 42分,標準差為 12分;為使成績公告時平均值提高到 63分,將所有成績做線性函數處理,且使原始最高分數 72分剛好等於 88分,此時標準差變成幾分?

Ans: 10

【詳解】

設原始分數為x,調整後的分數為y,

其關係式為 y = ax + b,

$$\exists \overline{y} = ax + b , \quad S_y = |a|S_x .$$

$$\begin{cases} 88 = 72a + b \\ 63 = 42a + b \end{cases}, \quad \text{## } 4 = \frac{5}{6}, \quad b = 28.$$

故標準差
$$S_y = \frac{5}{6} \times 12 = 10$$
 (分).

<mark>【例題 14】</mark> 【概念題】

考慮下列四組數據:

A: 1, 2, 3, 4, 5.

B: 2, 4, 6, 8, 10.

C: 996, 997, 998, 999, 1000.

D: 1, 4, 9, 16, 25.

其標準差分別為 S_A , S_B , S_C , S_D , 下列何者正確?

(1) $S_B = 2S_A$, (2) $S_C = S_A$, (3) $S_C > S_A$, (4) $S_D > S_A$, (5) $S_D = S_A^2$.

Ans: (1)(2)(4)

【詳解】

- (1) \bigcirc : $S_B = 2S_A$
- (2) \bigcirc : $S_C = S_A$
- $(3) \times$
- (4) 〇: : D的資料較分散, $: S_D > S_A$
- (5) `x

答案為(1)(2)(4).

【類題 14】

下列各組數據,比較其標準差大小.

A: 10, 10, 10, 10, 10. B: 5, 10, 15, 20, 25. C: 13, 14, 15, 16, 17.

Ans: $S_B > S_C > S_A$

【詳解】

 $S_A = 0$, B的資料較 C 分散,

所以 $S_B > S_C$, 故 $S_B > S_C > S_A$.

<mark>【例題 15】</mark>【概念題】

有10名學生的數學考科級分數分別為 x_1, x_2, \dots, x_{10} ,其算術平均數為7分,標準 差為3分.若令 $f(x) = (x_1 - x)^2 + (x_2 - x)^2 + \dots + (x_{10} - x)^2$,下列何者為真?

- (1) f(7) = 3 (2) f(7) = 90 (3) $x_1^2 + x_2^2 + \dots + x_{10}^2 = 790$
- **(4)** f(6) < f(7) **(5)** f(7) < f(8).

Ans : (2)(5)

【詳解】

(1)(2)由標準差公式
$$\sqrt{\frac{(x_1-7)^2+(x_2-7)^2+\cdots+(x_{10}-7)^2}{10}} = \sqrt{\frac{f(7)}{10}} = 3$$
,得 $f(7)=90$.

- (4) 因為二次函數

$$f(x) = (x_1 - x)^2 + (x_2 - x)^2 + \dots + (x_{10} - x)^2$$

$$= 10x^2 - 2(x_1 + x_2 + \dots + x_{10})x + (x_1^2 + x_2^2 + \dots + x_{10}^2)$$
在 $x = \frac{x_1 + x_2 + \dots + x_{10}}{10} = 7$ 有最小值,所以 $f(6) > f(7)$.

(5) 承上, f(7) < f(8).

答案為(2)(5).

【類題 15】

有 9 名小學生的年齡分別為 x_1 , x_2 , …, x_9 , 其中位數 7,算術平均數為 10,標準差為 5.若令 $f(x) = (x_1 - x)^2 + (x_2 - x)^2 + \dots + (x_9 - x)^2$,下列何者為真?

(1)
$$f(10) = 7$$
, (2) $f(10) = 225$, (3) $x_1^2 + x_2^2 + \dots + x_9^2 = 1125$,

(4) f(5)是極小,(5) f(10) < f(2).

Ans : (2)(3)(5)

【詳解】

(1)(2)由標準差公式

$$\sqrt{\frac{\left(x_{1}-10\right)^{2}+\left(x_{2}-10\right)^{2}+\cdots+\left(x_{9}-10\right)^{2}}{9}}=\sqrt{\frac{f\left(10\right)}{9}}=5, \quad \{ \text{ } \text{ } f\left(10\right)=225.$$

(3)
$$\boxtimes \not \sqsubseteq f(10) = (x_1 - 10)^2 + (x_2 - 10)^2 + \cdots + (x_9 - 1)^3 = x_1^2 + x_2^2 + \cdots + x_9^2 - 9 \times x_1^2$$

所以 $x_1^2 + x_2^2 + \dots + x_9^2 = 225 + 9 \times 10^3 = 112$.

(4) 二次函數

$$f(x) = (x_1 - x)^2 + (x_2 - x)^2 + \dots + (x_9 - x)^2 = 9x^2 - 2(x_1 + x_2 + \dots + x_9)x + (x_1^2 + x_2^2 + \dots + x_9^2)$$

在 $x = \frac{x_1 + x_2 + \dots + x_9}{9} = 10$ 有最小值.

(5) 承上, f(10) < f(2).

答案為(2)(3)(5).

<mark>【例題 16】</mark>【常考題】

某次考試,某班的數學成績不太理想,全班 30 位學生成績的算術平均數為 36 分,標準差為 12 分,全班最高也僅 66 分.該班數學老師決定將每位學生的原始成績x調整為成績y,作為成績的正式紀錄.

- (1) 如果老師採取線型函數 y = ax + b 調整成績,並設定 y 成績的最高分為 **100** 分, y 成績的算術平均數為 **60** 分,求 y 成績的標準差.
- (2) 如果老師採取根式函數 $y=10\sqrt{x}$ 調整成績,且經計算知: y 成績的算術平均數為 59 分,則 y 成績的標準差最接近哪一個正整數?

Ans: (1) 16, (2) 11

【詳解】

由題: $\bar{x} = 36$, $S_x = 12$

 $(1) \quad \overline{y} = a\overline{x} + b$

$$\begin{cases} 60 = a \times 36 + b \\ 100 = a \times 66 + b \end{cases} \Rightarrow 30a = 40 \Rightarrow a = \frac{4}{3}, \quad b = 12.$$

即調整的公式為: $y = \frac{4}{3}x + 12$,

故得
$$S_y = \frac{4}{3}S_x = \frac{4}{3} \times 12 = 16$$
.

(2) $\boxtimes \stackrel{-}{\boxtimes} \stackrel{-}{x} = 36 \Rightarrow \sum_{i=1}^{30} x_i = 36 \times 30 = 1080$,

$$y = 10\sqrt{x}$$

$$\Rightarrow y_i^2 = 100x_i$$

$$\Rightarrow \sum_{i=1}^{30} y_i^2 = 100 \sum_{i=1}^{30} x_i = 108000 ,$$

$$S_y = \sqrt{\frac{\sum_{i=1}^{30} y_i^2}{30} - 59^2} = \sqrt{\frac{108000}{30} - 59^2} = \sqrt{3600 - 3481} = \sqrt{119} = 11 .$$

【類題 16】

某次小考數學成績非常不理想,老師決定將每人的原始成績取平方根後,再乘以 10 做為紀錄的成績.已知全班 50 人,發現調整後的全班成績之算術平均數為 65 分,標準差為 10 分,請問這班 50 位同學未調整前成績的算術平均數.

Ans: 43.25

【詳解】

設原始成績x, 調整後分數y

$$\exists y = 10\sqrt{x} \Rightarrow y^2 = 100x \Rightarrow x = \frac{1}{100}y^2.$$

已知
$$\overline{y} = 65$$
, $S_y = 10 = \sqrt{\frac{\sum_{i=1}^{50} y_i^2}{50} - 65^2} \Rightarrow \sum_{i=1}^{50} y_i^2 = 50 \times (100 + 65^2)$.

$$\therefore \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{\frac{1}{100} \sum_{i=1}^{50} y_i^2}{50} = \frac{\frac{1}{100} \times 50 \times (100 + 65^2)}{50} = 43.25.$$

主題四、數據標準化

1. 標準分數(z分數): 設n個數據 $x_1, x_2, ..., x_n$ 的算術平均數為 μ ,標準差為 σ ,則數據 x_i 的標準分數(z分數)為

$$z_i = \frac{x_i - \mu}{\sigma}$$

2. 標準化後的 z 分數,其平均數會成為 0,標準差則成為 1.

<mark>【例題 17】</mark>【配合課本例 13】

某班級全班的語文測驗成績,平均為 10 級分,標準差 3 級分; 而數學競試全班平均為 65 分,標準差 8 分. A 生的語文測驗和 數學競試成績分別為 8 級分和 58 分.

- (1) 計算 A 生兩項測驗成績的 z 分數.
- (2) 相對於全班, A生的哪一項表現較好?

Ans: (1)
$$-\frac{7}{8}$$
, (2) 語文測驗

【詳解】

(1) 將原始成績標準化如下:

語文測驗
$$z_1 = \frac{8-10}{3} = -\frac{2}{3}$$
,
數學競試 $z_2 = \frac{58-65}{8} = -\frac{7}{8}$.

(2) 因為 $-\frac{7}{8} < -\frac{2}{3}$,相對於全班, A生的語文測驗表現較好.

【類題 17】

某班學生的體重平均為 65 公斤,標準差 6 公斤,身高的平均為 172 公分,標準差 9 公分. 若其中 A 生的體重為 70 公斤,身高為 180 公分,

- (1) 計算A 生體重與身高的z 分數.
- (2) 相對於全班, A生的哪一項較為突出?

Ans: (1)
$$\frac{8}{9}$$
, (2) 身高

【詳解】

(1) 體重
$$z_1 = \frac{70-65}{6} = \frac{5}{6}$$
, 身高 $z_2 = \frac{180-172}{9} = \frac{5}{9}$.

(2) 因為 $\frac{5}{6} < \frac{8}{9}$,相對於全班,A生的身高較為突出.

lt990k241 重要精選考題

基礎題 >>>

- 1. 根據一百多年來的氣象紀錄,美國費城年雨量平均值為 41.0 英吋,標準差為 6.1 英吋. 今欲將此項統計資料的單位由英制換為公制,請問該城市一百多年來年雨量的標準差,最接近下列的哪一個選項? (註: 1 英吋等於 25.4 毫米)
 - (1) 0.240毫米,(2) 1.61毫米,(3) 6.10毫米,(4) 155毫米,(5) 1041毫米.

【97 指乙】

Ans: (4)

【詳解】

25.4×6.1==159.94≒155(毫米)。

2. 在某項才藝競賽中,為了避免評審個人主觀影響參賽者成績太大,主辦單位規定: 先將 15 位評審給同一位參賽者的成績求得算術平均數,再將與平均數相差超過 15 分的評審成績剔除後重新計算平均值做為此參賽者的比賽成績.現在有一位參賽者所獲 15 位評審的平均成績為 76 分,其中有三位評審給的成績 92、45、55 應剔除,則這個參賽者的比賽成績為幾分? 【96 學測】

Ans: 79 分

【詳解】

 $(76 \times 15 - 92 - 45 - 55) \div 12 = 79$

- 3. 某班有學生 40人,某次考試數學科平均成績 50分,標準差為 10分,若將最高分與最低分去掉,重新計算其他 38人的成績,平均得 X 分及標準差 S 分,則
 - (1) \overline{X} 必大於 50; S 必小於 10
 - (2) \overline{X} 必小於 50; S 必大於 10
 - (3) *X* 必小於50; *S* 必小於10
 - (4) X 無法確定大於或小於 50; S 必小於 10
 - (5) X 無法確定大於或小於 50; S 也無法確定大於或小於 10.

Ans: (4)

【詳解】

去掉兩頭後所得數據較集中,故標準差減少。

- **4.** 某商店進一批水果,平均單價為每個 50元,標準差為 10元.今每個水果以進價的 1.5 倍為售價出售,則水果
 - (1) 平均售價為每個____元,
 - (2) 標準差為_____元. 【99 指乙】

 An_S : (1) 75, (2) 15

【詳解】

- (1) 水果平均售價為每個 50×1.5=75 元,
- (2) 標準差為 10×1.5=15 元。
- 5. 有10個數據如下: 1, 1, 3, 3, 5, 5, 6, 6, 6, 6.

今從此10個數據中任取1數刪除,問剩餘的9個數據中,下列何者不變?

(1) 算術平均數,(2) 中位數,(3) 幾何平均數,(4) 全距,(5) 標準差.

 $An_S : (2)(4)$

【詳解】

- (2) 中位數還是 5。
- (4) 全距仍是 6-1=5。
- 6. 根據統計資料,1月份臺北地區的平均氣溫是攝氏 16度,標準差是攝氏 3.5度.一般外國朋友比較習慣用華氏溫度來表示冷熱,已知當攝氏溫度為 x 時,華氏溫度為 $y = \frac{9}{5}x + 32$;若用華氏溫度表示,則 1月份臺北地區的平均氣溫是華氏幾度?標準差是華氏幾度?

Ans: 60.8 度, 6.3 度

【詳解】

- (1) 平均氣溫 $y = \frac{9}{5} \times 16 + 32 = 60.8$ 度。
- (2) 標準差 $y = \frac{9}{5} \times 3.5 = 6.3$ 度。
- 7. 求數據 101 到 111 的標準差.

 $An_S: \sqrt{10}$

【詳解】

101 102 103 104 105 106 107 108 109 110 111 106 -5 -4 -3 -2 -1 0 1 2 3 4 5 25 16 9 4 1 0 1 4 9 16 25 110 10

進階題

8. 有一筆統計資料,共有11個數據如下(不完全依大小排列):

2, 4, 4, 5, 5, 6, 7, 8, 11, *x*和 *y*,

已知這些數據的算術平均數和中位數都是6,且x小於y.請選出正確的選項:

(1) x+y=14,(2) y<9,(3) y>8,(4) 標準差至少是3.

$An_S : (1)(2)$

【詳解】

因中位數是 6,故 6 < x < y。

$$\frac{1}{11}(2+4+4+5+5+6+7+8+11+x+y) = 6$$

- \Rightarrow x + y + 52 = 66
- $\Rightarrow x + y = 14$
- \Rightarrow x = 6, y = 8 \equiv x = y = 7.

- 9. SARS 疫情期間,為了建立指標顯示疫情已受控制,以便向國人宣示可以過正常生活,有位公共衛生專家建議的指標是「連續7天,每天新增的可能病例都不超過(小於或等於)5人」.根據連續7天的新增病例計算,下列各選項,哪些必定符合此指標?
 - (1) 平均數 ≤ 3 ,(2) 標準差 ≤ 1 ,(3) 平均數 ≤ 3 且標準差 ≤ 2 ,
 - (4) 平均數 ≤ 3 且全距 ≤ 2 , (5) 眾數= 1且全距 ≤ 4 .

Ans: (4)(5)

【詳解】

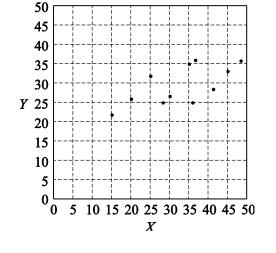
- (1) 例如:7,7,2,1,0,0,0。
- (2) 例如:7,7,2,1,0,0,0。
- (3) 例如:7,7,2,1,0,0,0。

- 10. 某次數學測驗分為選擇題與非選擇題兩部
 - 分 . 右列的散布圖中每個點(X,Y)分別代表一

位學生於此兩部分的得分,其中 X 表該生選擇題的得分, Y 表該生非選擇題的得分.設 Z = X + Y 為各生在該測驗的總分.共有 **11** 位 學生的得分數據.

試問以下哪些選項是正確的?

- (1) X的中位數>Y的中位數
- (2) X的標準差>Y的標準差
- (3) X的全距>Y的全距
- (4) Z的中位數 = X的中位數 + Y的中位數 . 【95 指乙】



$An_S : (1)(2)(3)$

【詳解】

2 3 4 5 6 7 8 9 10 11 X 15 20 25 28 30 35 36 37 41 45 48 平均數 33 變異數 105 標準差 10 Y 22 26 32 25 27 35 25 36 28 33 36 平均數 30 變異數 25 標準差 X+Y 37 46 57 53 57 70 61 73 69 78 84

- (1) X的中位數為 35, Y的中位數為 28。
- (2) X的全距為 33, X的全距為 14。
- (3) 顯然 X 較分散。
- (4) X的中位數為 35, Y的中位數為 28, X+Y的中位數為 61。
- **11.**已知 **9** 個人的數學成績,其算術平均數為 **56** 分,標準差為 **4** 分, 且其中 **7** 個人的成績為 50,52,53,54,57,60,61.求另 **2** 個人的成績.

Ans: 55 分及 62 分

【詳解】

設另2個人的成績為x,y,則

$$\frac{1}{9}(50+52+53+54+57+60+61+x+y) = 56$$

$$\Rightarrow x+y = 117 \cdots \cdots \oplus$$

$$\frac{1}{9}(6^2+4^2+3^2+2^2+1^2+4^2+5^2+(x-56)^2+(y-56)^2)=16$$

$$\Rightarrow (x-56)^2 + (y-56)^2 = 37$$

$$\Rightarrow (x-56)^2 + (117-x-56)^2 = 37$$

$$\Rightarrow$$
 $(x-56)^2 + (x-61)^2 = 37 = (-1)^2 + 6^2$

$$\Rightarrow$$
 x = 55 \Rightarrow x = 62 \circ

算術平均數 56 變異數 16 標準差

4

12. 定義一組資料的第一十分位數 w_1 為「至少有(含) $\frac{1}{10}$ 的資料不大於 w_1 ,

且至少有(含) $\frac{9}{10}$ 的資料不小於 w_1 」,試問下列敘述何者為真?

- (1) 任一組資料都恰有一個第一十分位數
- (2) 若將原資料每個數據分別乘以 5, 則原資料的第一十分位數 乘以 5 也會是新資料的第一十分位數
- (3) 若將原資料每個數據分別加 5, 則原資料的第一十分位數 加 5 也是新資料的第一十分位數
- (4) 若有 $\mathbf{A} \cdot \mathbf{B}$ 兩組資料其第一十分位數分別為 W_A, W_B ,

則 W_A + W_B 也是此兩組資料合併成一組後的第一十分位數

(5) 任一組資料的第一十分位數必小於該組資料之算術平均數.【94 指乙】

$An_S : (2)(3)$

【詳解】

- (A) X: 若資料相同,則不唯一.
- (B) ○: 同四分位數之觀念.
- (C) 〇: 同(B).
- (D) ×: 同(B).
- (E) X: 若資料相同, 有可能相等.